Solved Problem on Cauchy-Riemann Equations
advertisement   



\( \mathsf{b)}\;\; \displaystyle w=(\operatorname{e}^{y}+\operatorname{e}^{-y})\operatorname{sen}x+i(\operatorname{e}^{y}+\operatorname{e}^{-y})\cos x \)
\[ \mathsf{b)}\;\; \displaystyle w=(\operatorname{e}^{y}+\operatorname{e}^{-y})\operatorname{sen}x+i(\operatorname{e}^{y}+\operatorname{e}^{-y})\cos x \]


Condition 1: The function w is continuous everywhere in the complex plane.

The Cauchy-Riemann Equations are given by
\[ \bbox[#99CCFF,10px] {\begin{gather} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\[5pt] \frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}} \end{gather}} \]
Identifying the functions u(x, y) and v(x, y)
\[ \begin{array}{l} u(x,y)=(\operatorname{e}^{y}+\operatorname{e}^{-y})\operatorname{sen}x\\ v(x,y)=(\operatorname{e}^{y}+\operatorname{e}^{-y})\cos x \end{array} \]
Calculating the partial derivatives
\[ \begin{array}{l} \dfrac{\partial u}{\partial x}=(\operatorname{e}^{y}+\operatorname{e}^{-y})\cos x\\[5pt] \dfrac{\partial v}{\partial y}=(\operatorname{e}^{y}-\operatorname{e}^{-y})\cos x\\[5pt] \dfrac{\partial u}{\partial y}=(\operatorname{e}^{y}-\operatorname{e}^{-y})\operatorname{sen}x\\[5pt] \dfrac{\partial v}{\partial x}=-(\operatorname{e}^{y}+\operatorname{e}^{-y})\operatorname{sen}x \end{array} \]
Condition 2: The derivatives are continuous everywhere in the complex plane.

Applying the Cauchy-Riemann Equations
\[ \begin{gather} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\ (\operatorname{e}^{y}+\operatorname{e}^{-y})\cos x\neq(\operatorname{e}^{y}-\operatorname{e}^{-y})\cos x \end{gather} \]
\[ \begin{gather} \frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}\\ (\operatorname{e}^{y}-\operatorname{e}^{-y})\operatorname{sen}x=-[-(\operatorname{e}^{y}+\operatorname{e}^{-y})\operatorname{sen}x]\\ (\operatorname{e}^{y}-\operatorname{e}^{-y})\operatorname{sen}x\neq(\operatorname{e}^{y}+\operatorname{e}^{-y})\operatorname{sen}x \end{gather} \]
Condition 3: The function w does not satisfy the Cauchy-Riemann Equations.

The function w is continuous, the derivatives are continuous, but the function does not satisfy the Cauchy-Riemann Equations, the function w is not analytic.

The derivative is given by
\[ \bbox[#99CCFF,10px] {f'(z)=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y}} \]
\[ w'=(\operatorname{e}^{y}+\operatorname{e}^{-y})\cos x-i(\operatorname{e}^{y}+\operatorname{e}^{-y})\operatorname{sen}x\neq(\operatorname{e}^{y}-\operatorname{e}^{-y})\cos x-i(\operatorname{e}^{y}-\operatorname{e}^{-y})\operatorname{sen}x \]
The derivative is not unique.

The function w is not differentiable at any point of the complex plane.
advertisement