The average linear expansion coefficient of iron is equal to 0.0000117 °C−1. By how much
should the temperature of an iron block be increased so that its volume increases by 1%?
Problem data:
- Linear expansion coefficient of iron: α = 0.0000117 °C−1;
- Change in volume: ΔV = 1%.
Problem diagram:
Solution:
The volume variation is 1%
\[
\begin{gather}
\Delta V=1V_0 \\[5pt]
\Delta V=\frac{1}{100}V_0 \\[5pt]
\Delta V=0.01V_0
\end{gather}
\]
The problem provides us with the linear expansion coefficient of the material. To calculate the volume increase,
we need the volumetric expansion coefficient, which will be
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\gamma=3\alpha}
\end{gather}
\]
\[
\begin{gather}
\gamma=3\times 0.0000117\;\mathrm{°C^{-1}} \\[5pt]
\gamma=0.0000351\;\mathrm{°C^{-1}} \\[5pt]
\gamma=3.51\times 10^{-5}\;\mathrm{°C^{-1}}
\end{gather}
\]
The final volume is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\Delta V=\gamma V_0\Delta t}
\end{gather}
\]
substituting the problem data, we find the temperature variation
\[
\begin{gather}
0.01\cancel{V_0}=\left(3.51\times 10^{-5}\;\mathrm{°C^{-1}}\right)\cancel{V_0}\Delta t \\[5pt]
0,01=\left(3.51\times 10^{-5}\;\mathrm{°C^{-1}}\right)\Delta t \\[5pt]
\Delta t=\frac{0.01}{3.51\times 10^{-5}\;\mathrm{°C^{-1}}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\Delta t\approx 285\;\mathrm{°C}}
\end{gather}
\]