c)
\( \operatorname{Arctg}z \quad , \quad z_{0}=\dfrac{i}{3} \)
Queremos calcular
\[
\begin{gather}
w=\operatorname{Arctg}z \tag{I}
\end{gather}
\]
podemos escrever
\[
\begin{gather}
\operatorname{tg}w=z \tag{II}
\end{gather}
\]
A tangente é dada por
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\operatorname{tg}w=\frac{\operatorname{e}^{iw}-\operatorname{e}^{-iw}}{i\left(\operatorname{e}^{iw}+\operatorname{e}^{-iw}\right)}} \tag{III}
\end{gather}
\]
substituindo a expressão (III) na expressão (II)
\[
\begin{gathered}
z=\frac{\operatorname{e}^{iw}-\operatorname{e}^{-iw}}{i\left(\operatorname{e}^{iw}+\operatorname{e}^{-iw}\right)}\\
iz(\operatorname{e}^{iw}+\operatorname{e}^{-iw})=\operatorname{e}^{iw}-\operatorname{e}^{-iw}\\
iz\operatorname{e}^{iw}+iz\operatorname{e}^{-iw}-\operatorname{e}^{iw}+\operatorname{e}^{-iw}=0
\end{gathered}
\]
multiplicando toda a equação por e
iw
\[
\begin{gathered}
\qquad \qquad \quad (iz-1)\operatorname{e}^{iw}+(iz+1)\operatorname{e}^{-iw}=0\qquad (\times\operatorname{e}^{iw})\\
(iz-1)\operatorname{e}^{iw}.e^{iw}+(iz+1)\operatorname{e}^{-iw}.e^{iw}=0\\
(iz-1)\operatorname{e}^{2iw}+(iz+1)=0
\end{gathered}
\]
fazendo a mudança de variável
\[
\begin{gather}
\lambda =\operatorname{e}^{2iw} \tag{IV}\\[10pt]
(iz-1)\lambda+(iz+1)=0\\\lambda =\frac{-(1+iz)}{-(1-iz)}\\
\lambda=\frac{1+iz}{1-iz}
\end{gather}
\]
substituindo este valor de λ na expressão (IV)
\[
\begin{gather}
\frac{1+iz}{1-iz}=\operatorname{e}^{2iw}\\
iw=\frac{1}{2i}.\frac{i}{i}\;\operatorname{Ln}\frac{1+iz}{1-iz}\\
w=-{\frac{i}{2}}\;\operatorname{Ln}\frac{1+iz}{1-iz} \tag{V}
\end{gather}
\]
substituindo as expressão (V) na expressão (I)
\[ \bbox[#FFCCCC,10px]
{\operatorname{Arctg}z=-{\frac{i}{2}}\;\operatorname{Ln}\frac{1+iz}{1-iz}}
\]
Para
\( z_{0}=\dfrac{i}{3} \)
\[
\begin{gather}
\operatorname{Arctg}\frac{i}{3}=-{\frac{i}{2}}\;\operatorname{Ln}\left(\frac{1-\frac{1}{3}}{1+\frac{1}{3}}\right)\\[5pt]
\operatorname{Arctg}\frac{i}{3}=-{\frac{i}{2}}\;\operatorname{Ln}\left(\frac{\frac{2}{3}}{\frac{4}{3}}\right)\\[5pt]
\operatorname{Arctg}\frac{i}{3}=-{\frac{i}{2}}\;\operatorname{Ln}\left(\frac{2}{\cancel{3}}.\frac{\cancel{3}}{4}\right)\\[5pt]
\operatorname{Arctg}\frac{i}{3}=-{\frac{i}{2}}\;\operatorname{Ln}\left(\frac{1}{2}\right)\\[5pt]
\operatorname{Arctg}\frac{i}{3}=-{\frac{i}{2}}\;\operatorname{Ln}\left(\frac{1}{2}\right) \tag{VI}
\end{gather}
\]
A função multivalente do logaritmo é dada por
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\operatorname{Ln}z=\ln |z|+i\;\left(\operatorname{arg}(z)+2k\pi \right)} \tag{VII}
\end{gather}
\]
O argumento do logaritmo é o número complexo da forma
\[
z=\frac{1}{2}+0i
\]
O módulo é dado por
\[ \bbox[#99CCFF,10px]
{|z|=\sqrt{x^{2}+y^{2}}}
\]
\[
\begin{gather}
|z|=\sqrt{\left(\frac{1}{2}\right)^{2}+0^{2}\;}\\
|z|=\frac{1}{2} \tag{VIII}
\end{gather}
\]
O argumento é dado por
\[ \bbox[#99CCFF,10px]
{\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{y}{x}\right)}
\]
\[
\begin{align}
\operatorname{arg}(z) &=\operatorname{arctg}\left(\frac{y}{x}\right)=\operatorname{arctg}\left(\frac{0}{\frac{1}{2}}\right)=\\
&=\operatorname{arctg}(0)=0\tag{IX}
\end{align}
\]
substituindo os valores (VIII) e (IX) na expressão (VII)
\[
\begin{gather}
\operatorname{Ln}\left(\frac{1}{2}\right)=\ln\left(\frac{1}{2}\right)+i(0+2k\pi)\\
\operatorname{Ln}\left(\frac{1}{2}\right)=\ln \left(\frac{1}{2}\right)+2k\pi i \tag{X}
\end{gather}
\]
substituindo a expressão (X) na expressão (VI)
\[
\begin{gathered}
\operatorname{Arctg}\left(\frac{i}{3}\right)=-{\frac{i}{2}}\;\left[\ln\left(\frac{1}{2}\right)+2k\pi i\right]\\
\operatorname{Arctg}\left(\frac{i}{3}\right)=\frac{i}{2}\;\ln\left(\frac{1}{2}\right)^{-1}-\frac{i}{2}.2k\pi i
\end{gathered}
\]
\[ \bbox[#FFCCCC,10px]
{\operatorname{Arctg}\left(\frac{i}{3}\right)=\frac{i}{2}\;\ln (2)+k\pi}
\]