Exercício Resolvido de Números Complexos
publicidade   



c) \( \sqrt[{3}]{i} \)

As raízes de um número complexo são dadas por
\[ \bbox[#99CCFF,10px] {z=\sqrt[{n}]{r}\left(\cos \frac{\theta +2k\pi}{n}+i\operatorname{sen}\frac{\theta +2k\pi }{n}\right)} \]
\[ \begin{gather} x+iy=0+i\\[5pt] r=\sqrt{0^{2}+1^{2}\;}=\sqrt{1\;}=1 \end{gather} \]
\[ \begin{gather} \theta=\operatorname{arctg}\left(\frac{1}{0}\right)=\operatorname{arctg}\left(\infty\right)=\frac{\pi }{2} \end{gather} \]
Para a raiz cúbica, n=3 e k=0, 1, 2.

Para k=0:
\[ \begin{gathered} z_{1}=\sqrt[{3}]{1}\left(\cos \frac{\frac{\pi}{2}+2.0\pi }{3}+i\operatorname{sen}\frac{\frac{\pi }{2}+2.0\pi}{3}\right)\\ z_{1}=1\left(\cos \frac{\pi}{6}+i\operatorname{sen}\frac{\pi}{6}\right)\\ z_{1}=1\left(\frac{\sqrt{3}}{2}+i\frac{1}{2}\right) \end{gathered} \]
\[ \bbox[#FFCCCC,10px] {z_{1}=\frac{\sqrt{3}}{2}+i\frac{1}{2}} \]
Para k=1:
\[ \begin{gathered} z_{2}=\sqrt[{3}]{1}\left(\cos \frac{\frac{\pi}{2}+2.1\pi }{3}+i\operatorname{sen}\frac{\frac{\pi }{2}+2.1\pi}{3}\right)\\ z_{2}=1\left(\cos \frac{\frac{\pi +4\pi}{2}}{3}+i\operatorname{sen}\frac{\frac{\pi +4\pi}{2}}{3}\right)\\ z_{2}=1\left(\cos \frac{5\pi}{6}+i\operatorname{sen}\frac{5\pi}{6}\right)\\ z_{2}=1\left(-{\frac{\sqrt{3}}{2}}+i\frac{1}{2}\right) \end{gathered} \]
\[ \bbox[#FFCCCC,10px] {z_{2}=-{\frac{\sqrt{3}}{2}}+i\frac{1}{2}} \]
Para k=2:
\[ \begin{gathered} z_{3}=\sqrt[{3}]{1}\left(\cos \frac{\frac{\pi}{2}+2.2\pi }{3}+i\operatorname{sen}\frac{\frac{\pi }{2}+2.2\pi}{3}\right)\\ z_{3}=1\left(\cos \frac{\frac{\pi +8\pi}{2}}{3}+i\operatorname{sen}\frac{\frac{\pi +8\pi}{2}}{3}\right)\\ z_{3}=1\left(\cos \frac{9\pi}{6}+i\operatorname{sen}\frac{9\pi}{6}\right)\\ z_{3}=1\left(0-i\right) \end{gathered} \]
\[ \bbox[#FFCCCC,10px] {z_{3}=-i} \]
Gráfico 1
publicidade   

Licença Creative Commons
Fisicaexe - Exercícios Resolvidos de Física de Elcio Brandani Mondadori está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial-Compartilha Igual 4.0 Internacional .