Solved Problem on Cauchy-Riemann Equations
advertisement   



d)   \( \displaystyle w=x^{2}y^{2}+i2x^{2}y^{2} \)


Condition 1: The function w is continuous everywhere in the complex plane.

The Cauchy-Riemann Equations are given by
\[ \bbox[#99CCFF,10px] {\begin{gather} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\[5pt] \frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}} \end{gather} } \]
Identifying the functions u(x, y) and v(x, y)
\[ \begin{array}{l} u(x,y)=x^{2}y^{2}\\ v(x,y)=2x^{2}y^{2} \end{array} \]
Calculating the partial derivatives
\[ \begin{array}{l} \dfrac{\partial u}{\partial x}=2xy^{2}\\[5pt] \dfrac{\partial v}{\partial y}=4x^{2}y\\[5pt] \dfrac{\partial u}{\partial y}=2x^{2}y \\[5pt] \dfrac{\partial v}{\partial x}=4xy^{2} \end{array} \]
Condition 2: The derivatives are continuous everywhere in the complex plane.

Applying the Cauchy-Riemann Equations
\[ \begin{gather} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\ 2xy^{2}\neq 4x^{2}y \end{gather} \]
\[ \begin{gather} \frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}\\ 2x^{2}y\neq -4xy^{2} \end{gather} \]
Condition 3: The function w does not satisfy the Cauchy-Rerimmann Equations.

The function w and the derivatives are continuous, but the function does not satisfy the Cauchy-Riemann Equations, the function w is not analytic in the complex plane.

The Cauchy-Riemann Equations are not satisfied, but if we do in the first equation
\[ \begin{gather} 2xy^{2}=4x^{2}y\\ y=2x \end{gather} \]
and in the second equation
\[ \begin{gather} 2x^{2}y=-4xy^{2}\\ x=-2y\\ y=-{\frac{1}{2}}x \end{gather} \]
  • For y = 2x
\[ \begin{gather} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\ 2x(2x)^{2}=4x^{2}(2x)\\8x^{3}=8x^{3} \end{gather} \]
\[ \begin{gather} \frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}\\ 2x^{2}(2x)=-4x(2x)^{2}\\ 4x^{3}(2x)\neq-16x^{3} \end{gather} \]
in this case, the function satisfies the first Cauchy-Riemann Equation but does not satisfy the second equation.
  • For \( y=-{\dfrac{1}{2}}x \)
\[ \begin{gather} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\ 2x\left(-{\frac{1}{2}}x\right)^{2}=4x^{2}\left(-{\frac{1}{2}}x\right)\\ \frac{1}{2}x^{3}\neq2x^{3} \end{gather} \]
\[ \begin{gather} \frac{\partial u}{\partial y}=-{\frac{\partial v}{\partial x}}\\ -x^{3}=-x^{3} \end{gather} \]
in this case, the function satisfies the second Cauchy-Riemann Equation but does not satisfy the first equation.
  • For x = 0
\[ \begin{split} \frac{\partial u}{\partial x} &=\lim_{\Delta x\rightarrow 0}{\frac{u(0+\Delta x,y)-u(0,y)}{\Delta x}}=\\ &=\lim_{\Delta x\rightarrow 0}{\frac{(0+\Delta x)^{2}y^{2}-0^{2}.y^{2}}{\Delta x}}=\\ &=\lim_{\Delta x\rightarrow 0}{\frac{\Delta x^{2}y^{2}}{\Delta x}}=\lim_{\Delta x\rightarrow 0}{\Delta xy^{2}}=0 \end{split} \]
\[ \begin{split} \frac{\partial u}{\partial y} &=\lim_{\Delta y\rightarrow 0}{\frac{u(0,y+\Delta y)-u(0,y)}{\Delta y}}=\\ &=\lim_{\Delta y\rightarrow 0}{\frac{0^{2}.(y+\Delta y)^{2}-0^{2}.y^{2}}{\Delta y}}=0 \end{split} \]
\[ \begin{split} \frac{\partial v}{\partial x} &=\lim_{\Delta x\rightarrow 0}{\frac{v(0+\Delta x,y)-v(0,y)}{\Delta x}}=\\ &=\lim_{\Delta x\rightarrow 0}{\frac{2(0+\Delta x)^{2}y^{2}-2.0^{2}.y^{2}}{\Delta x}}=\\ &=\lim_{\Delta x\rightarrow 0}{\frac{2\Delta x^{2} y^{2}}{\Delta x}}=\lim_{\Delta x\rightarrow 0}{2\Delta x y^{2}}=0 \end{split} \]
\[ \begin{split} \frac{\partial u}{\partial y} &=\lim_{\Delta y\rightarrow 0}{\frac{v(0,y+\Delta y)-v(0,y)}{\Delta y}}=\\ &=\lim_{\Delta y\rightarrow 0}{\frac{2.0^{2}.(y+\Delta y)^{2}-2.0^{2}y^{2}}{\Delta y}}=0 \end{split} \]
  • For y = 0
\[ \begin{split} \frac{\partial u}{\partial x} &=\lim_{\Delta x\rightarrow 0}{\frac{u(x+\Delta x,0)-u(x,0)}{\Delta x}}=\\ &=\lim_{\Delta x\rightarrow 0}{\frac{(x+\Delta x)^{2}.0^{2}-x^{2}.0^{2}}{\Delta x}}=0 \end{split} \]
\[ \begin{split} \frac{\partial u}{\partial y} &=\lim_{\Delta y\rightarrow 0}{\frac{u(x,0+\Delta y)-u(x,0)}{\Delta y}}=\\ &=\lim_{\Delta y\rightarrow 0}{\frac{x^{2}(0+\Delta y)^{2}-x^{2}.0^{2}}{\Delta y}}=\\ &=\lim_{\Delta y\rightarrow 0}{\frac{x^{2}\Delta y^{2}}{\Delta y}}=\lim_{\Delta y\rightarrow 0}{x^{2}\Delta y}=0 \end{split} \]
\[ \begin{split} \frac{\partial v}{\partial x} &=\lim_{\Delta x\rightarrow 0}{\frac{v(x+\Delta x,0)-v(x,0)}{\Delta x}}=\\ &=\lim_{\Delta x\rightarrow 0}{\frac{2(x+\Delta x)^{2}.0^{2}-2.x^{2}.0^{2}}{\Delta x}}=0 \end{split} \]
\[ \begin{split} \frac{\partial u}{\partial y} &=\lim_{\Delta y\rightarrow 0}{\frac{v(x,0+\Delta y)-v(x,0)}{\Delta y}}=\\ &=\lim_{\Delta y\rightarrow 0}{\frac{2x^{2}(0+\Delta y)^{2}-2x^{2}.0^{2}}{\Delta y}}=\\ &=\lim_{\Delta y\rightarrow 0}{\frac{2.x^{2}\Delta y^{2}}{\Delta y}}=\lim_{\Delta y\rightarrow 0}{2.x^{2}\Delta y}=0 \end{split} \]
The Cauchy-Rerimmann Equations are satisfied for x = 0 on the real axis independent of the value of y, or for y = 0 on the imaginary axis independent of the value of x.

The derivative is given by
\[ \bbox[#99CCFF,10px] {f'(z)=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y}} \]
\[ w'=2xy^{2}+i4xy^{2}\neq 4x^{2}y-i2x^{2}y \]
for x = 0
\[ w'=2.0y^{2}+i4.0y^{2}=4.0^{2}y-i2.0^{2}y \]
\[ \bbox[#FFCCCC,10px] {w'=0} \]
for y = 0
\[ w'=2x.0^{2}+i4x.0^{2}=4x^{2}.0-i2x^{2}.0 \]
\[ \bbox[#FFCCCC,10px] {w'=0} \]
The function w A função w is not differenciable at any point in the complex plane, only on the axes x = 0 and y = 0.
advertisement