Solved Problem on Kinematics
advertisement   



Obtain the expression for displacement as a function of time with constant acceleration from the expression of instantaneous acceleration.


Solution

The instantaneous acceleration is given by
\[ \bbox[#99CCFF,10px] {a=\frac{dv}{dt}} \]
We integrate this expression in dt on both sides
\[ \int {{\frac{dv}{dt'}\;dt}}=\int {{a\;dt}} \]
as the acceleration a is constant, it is carried outside of the integral sign, and \( \dfrac{dv}{dt}\;dt=dv \).
The limits of integration are v0, the initial speed, and v(t), a speed in an instant t for dv, and t0, initial time, and t, for dt
\[ \begin{gather} \int_{{v_{0}}}^{{v(t)}}\;dv=a\int_{{t_{0}}}^{t}\;dt\\ \left.v\;\right|_{\;v_{0}}^{\;v(t)}=a\;\left.t\;\right|_{\;t_{0}}^{\;t}\\ v(t)-v_{0}=a\left(t-t_{0}\right) \end{gather} \]
\[ \bbox[#FFCCCC,10px] {v(t)=v_{0}+a\left(t-t_{0}\right)} \]
what describes the speed of a particle in motion with constant acceleration.
The Instantaneous speed is given by
\[ \bbox[#99CCFF,10px] {v=\frac{dx}{dt}} \]
\[ \frac{dx}{dt}=v_{0}+a \left(t-t_{0}\right) \]
we integrating this expression in dt from both sides
\[ \int {{\frac{dx}{dt}\;dt}}=\int{{\left[v_{0}+a\left(t-t_{0}\right)\right]\;dt}} \]
in the integral, on the left-hand side, \( \dfrac{dx}{dt}\;dt=dx \), and on the right-hand side of the equation the integral of the sum is the sum of the integral, and as of v0, t0 and a are constants, they are carried outside of the integral sign.
The limits of integration are x0, the initial position, and x(t), a position in an instant t for dx, and t0, initial time, and t, for dt
\[ \begin{gather} \int_{x_{0}}^{x(t)}dx=v_{0}\int_{t_{0}}^{t}\;dt+a\int_{t_{0}}^{t}t\;dt-at_{0}\int_{t_{0}}^{t}dt\\[5pt] \left.x\;\right|_{\;x_{0}}^{\;x(t)}=v_{0}\;\left.t\;\right|_{\;t_{0}}^{\;t}+a\;\left.\frac{t^{2}}{2}\;\right|_{\;t_{0}}^{\;t}-a t_{0}\;\left.t\;\right|_{\;t_{0}}^{\;t}\\[5pt] x(t)-x_{0}=v_{0}\left(t-t_{0}\right)+a\left(\frac{t^{2}}{2}-\frac{t_{0}^{2}}{2}\right)-at_{0}\left(t-t_{0}\right)\\[5pt] x(t)=x_{0}+v_{0}\left(t-t_{0}\right)+a\left(\frac{t^{2}}{2}-\frac{t_{0}^{2}}{2}-t_{0}t+t_{0}^{2}\right)\\[5pt] x(t)=x_{0}+v_{0}\left(t-t_{0}\right)+a\left(\frac{t^{2}}{2}-t_{0}t+\frac{t_{0}^{2}}{2}\right)\\[5pt] x(t)=x_{0}+v_{0}\left(t-t_{0}\right)+\frac{a}{2}\left(t^{2}-2t_{0}t+t_{0}^{2}\right) \end{gather} \]
\[ \bbox[#FFCCCC,10px] {x(t)=x_{0}+v_{0}\left(t-t_{0}\right)+\frac{a}{2}\left(t-t_{0}\right)^{2}} \]
what describes a particle in motion in a straight line with constant acceleration.
advertisement