Solved Problem on Kinematics
advertisement   



Obtain the expression for displacement as a function of time with constant acceleration from the expression of instantaneous acceleration.


Solution

The instantaneous acceleration is given by
\[ \bbox[#99CCFF,10px] {a=\frac{dv}{dt}} \]
We integrate this expression in dt on both sides
\[ \int {{\frac{dv}{dt'}\;dt}}=\int {{a\;dt}} \]
as the acceleration a is constant, it is carried outside of the integral sign, and \( \dfrac{dv}{dt}\;dt=dv \)
\[ \begin{gather} \int {{dv}}=a\int{{dt}}\\ v(t)+C_{1}=at+C_{2}\\ v(t)=at+C_{2}-C_{1} \end{gather} \]
C1 and C2 are integration constants that can be defined as a function of a new constant C = C2C1
\[ \begin{gather} v(t)=at+C \tag{I} \end{gather} \]
assuming that in the initial instant, t0, the particle is with the initial speed, v0, we have the initial condition v(t0) = v0, substituting in the expression (I)
\[ \begin{gather} v(t_{0})=at_{0}+C\\ v_{0}=at_{0}+C\\ C=v_{0}-at_{0} \tag{II} \end{gather} \]
substituting the expression (II) into expression (I)
\[ v(t)=at+v_{0}-at_{0} \]
\[ \bbox[#FFCCCC,10px] {v(t)=v_{0}+a\left(t-t_{0}\right)} \]
what describes the speed of a particle in motion with constant acceleration.
The Instantaneous speed is given by
\[ \bbox[#99CCFF,10px] {v=\frac{dx}{dt}} \]
substituting this expression in the result obtained above
\[ \frac{dx}{dt}=v_{0}+a\left(t-t_{0}\right) \]
we integrating this expression in dt from both sides
\[ \int {{\frac{dx}{dt}\;dt}}=\int{{\left[v_{0}+a\left(t-t_{0}\right)\right]\;dt}} \]
in the integral, on the left-hand side, \( \dfrac{dx}{dt}\;dt=dx \), and on the right-hand side of the equation the integral of the sum is the sum of the integral, and as of v0, t0 and a are constants, they are carried outside of the integral sign
\[ \begin{gather} \int {{dx}}=v_{0}\int {{dt}}+a\int {{t\;dt}}-at_{0}\int{{dt}}\\ x(t)+C_{1}=v_{0}t+C_{2}+a\frac{t^{2}}{2}+C_{3}-at_{0}t+C_{4}\\ x(t)=v_{0}t+a\frac{t^{2}}{2}-at_{0}t+C_{2}+C_{3}+C_{4}-C_{1} \end{gather} \]
C1, C2, C3 and C4 are integration constants that can be defined as function of a new constant C = C2+C3+C4C1
\[ x(t)=v_{0}t+\frac{a}{2}\left(t^{2}-2t_{0}t\right)+C \]
on the right-hand side, in the parentheses, we add and subtract t02
\[ \begin{gather} x(t)=v_{0}t+\frac{a}{2}\left(t^{2}-2t_{0}t+t_{0}^{2}-t_{0}^{2}\right)+C\\ x(t)=v_{0}t+\frac{a}{2}\left(t-t_{0}\right)^{2}-\frac{a}{2}t_{0}^{2}+C \tag{III} \end{gather} \]
assuming that in the initial instant t0, the particle is in the initial position, x0, we have the initial condition x(t0) = x0, substituting in the expression (III)
\[ \begin{gather} x(t_{0})=v_{0}t_{0}+\frac{a}{2}\left(t_{0}-t_{0}\right)^{2}-\frac{a}{2}t_{0}^{2}+C\\ C=x(t_{0})-v_{0}t_{0}-\frac{a}{2}.0^{2}+\frac{a}{2}t_{0}^{2}\\ C=x_{0}-v_{0}t_{0}+\frac{a}{2}t_{0}^{2} \tag{IV} \end{gather} \]
substituting the expression (IV) into expression (III)
\[ x(t)=v_{0}t+\frac{a}{2}\left(t-t_{0}\right)^{2}-\frac{a}{2}t_{0}^{2}+x_{0}-v_{0}t_{0}+\frac{a}{2}t_{0}^{2} \]
\[ \bbox[#FFCCCC,10px] {x(t)=x_{0}+v_{0}\left(t-t_{0}\right)+\frac{a}{2}\left(t-t_{0}\right)^{2}} \]
what describes a particle in motion in a straight line with constant acceleration.
advertisement