Solved Problem on Coulomb's Law and Electric Field
advertisement   



An arc of a circle of radius a and central angle θ0 carries an electric charge Q uniformly distributed along the arc. Determine:
a) The electric field vector, at the points of the line passing through the center of the arc and is perpendicular to the plane containing the arc;
b) The electric field vector in the center of curvature of the arc;
c) The electric field vector when the central angle tends to zero.


Problem data:
  • Radius of the arc:    a;
  • Central angle of the arc:    θ0;
  • Electric charge on the arc:    Q.
Problem diagram:

The position vector r goes from an element of charge dq to point P where we want to calculate the electric field, the vector rq locates the charge element relative to the origin of the reference frame, and the vector rp locates point P (Figure 1-A).
\[ \begin{gather} \mathbf{r}={\mathbf{r}}_{p}-{\mathbf{r}}_{q} \end{gather} \]
Figure 1

From the geometry of the problem, we choose cylindrical coordinates (Figure 1-B), the rq vector, which is on the yz plane, is written as \( {\mathbf{r}}_{q}=y\;\mathbf{j}+z\;\mathbf{k} \) and the rp vector only has a component in the i direction, \( {\mathbf{r}}_{p}=x\;\mathbf{i} \) (contrary to what is usually where the rq vector is on the xy plane and the axis of the cylinder in the k direction), the position vector will be
\[ \begin{gather} \mathbf{r}=x\;\mathbf{i}-\left(y\;\mathbf{j}+z\;\mathbf{k}\right)\\[5pt] \mathbf{r}=x\;\mathbf{i}-y\;\mathbf{j}-z\;\mathbf{k} \tag{I} \end{gather} \]

From expression (I), the magnitude of the position vector will be
\[ \begin{gather} r^{2}=x^{2}+(-y)^{2}+(-z)^{2}\\[5pt] r=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}} \tag{II} \end{gather} \]
where x, y, and z, in cylindrical coordinates, are given by
\[ \begin{gather} \left\{ \begin{array}{l} x=x \\ y=a\cos \theta \\ z=a\sin \theta \end{array} \right. \tag{III} \end{gather} \]
Solution

a) The electric field vector is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {\mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\int{\frac{dq}{r^{2}}\;\frac{\mathbf{r}}{r}}} \end{gather} \]
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon _{0}}\int{\frac{dq}{r^{3}}\;\mathbf{r}} \tag{IV} \end{gather} \]
Using the expression of the linear density of charge λ, we have the charge element dq
\[ \begin{gather} \bbox[#99CCFF,10px] {\lambda =\frac{dq}{ds}} \end{gather} \]
\[ \begin{gather} dq=\lambda \;ds \tag{V} \end{gather} \]
where ds is an arc element with angle dθ (Figure 2)
\[ \begin{gather} ds=a\;d\theta \tag{VI} \end{gather} \]
substituting the expression (VI) into expression (V)
\[ \begin{gather} dq=\lambda a\;d\theta \tag{VII} \end{gather} \]

Figure 2

substituting expressions (I), (II), and (VII) into expression (IV)
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\int {\frac{\lambda a\;d\theta}{\left[\left(x^{2}+y^{2}+z^{2}\right)^{\;\frac{1}{2}}\right]^{\;3}}}\left(x\;\mathbf{i}-y\;\mathbf{j}-z\;\mathbf{k}\right)\\[5pt] \mathbf{E}=\frac{1}{4\pi\epsilon_{0}}\int {\frac{\lambda a\;d\theta}{\left(x^{2}+y^{2}+z^{2}\right)^{\;\frac{3}{2}}}}\left(x\;\mathbf{i}-y\;\mathbf{j}-z\;\mathbf{k}\right) \tag{VIII} \end{gather} \]
substituting expressions (III) into expression (VIII)
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi\epsilon_{0}}\int {\frac{\lambda a\;d\theta }{\left[\;x^{2}+\left(a\cos \theta\right)^{2}+\left(a\sin \theta\right)^{2}\right]^{\;\frac{3}{2}}}}\left(x\;\mathbf{i}-a\cos\theta\;\mathbf{j}-a\sin \theta\;\mathbf{k}\right)\\[5pt] \mathbf{E}=\frac{1}{4\pi\epsilon_{0}}\int {\frac{\lambda a\;d\theta}{\left[x^{2}+a^{2}\cos^{2}\theta +a^{2}\sin ^{2}\theta\;\right]^{\;\frac{3}{2}} }}\left(x\;\mathbf{i}-a\cos \theta\;\mathbf{j}-a\sin \theta\;\mathbf{k}\right)\\[5pt] \mathbf{E}=\frac{1}{4\pi\epsilon_{0}}\int {\frac{\lambda a\;d\theta}{\left[x^{2}+a^{2}\underbrace{\left(\cos ^{2}\theta+\sin ^{2}\theta\right)}_{1}\right]^{\;\frac{3}{2}}}\left(x\;\mathbf{i}-a\cos\theta\;\mathbf{j}-a\sin \theta\;\mathbf{k}\right)}\\[5pt] \mathbf{E}=\frac{1}{4\pi\epsilon_{0}}\int {\frac{\lambda a\;d\theta}{\left(x^{2}+a^{2}\right)^{\;\frac{3}{2}}}\left(x\;\mathbf{i}-a\cos\theta\;\mathbf{j}-a\sin \theta\;\mathbf{k}\right)} \end{gather} \]
As the charge density λ and the radius a are constants they are moved outside of the integral, and the integral of the sum is equal to the sum of the integrals
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\frac{\lambda a}{\left(x^{2}+a^{2}\right)^{\;\frac{3}{2}}}\left(x\int d\theta\;\mathbf{i}-a\int \cos \theta d\theta\;\mathbf{j}-a\int \sin \theta \;d\theta\;\mathbf{k}\right) \end{gather} \]
As there is symmetry, we can divide the central angle θ0 into two parts measuring \( \frac{\theta_{0}}{2} \) clockwise and \( -{\frac{\theta_{0}}{2}} \) counterclockwise (Figure 3), the integration limits will be \( -{\frac{\theta_{0}}{2}} \) and \( \frac{\theta_{0}}{2} \)
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\frac{\lambda a}{\left(x^{2}+a^{2}\right)^{\;\frac{3}{2}}}\left(x\int_{-{\frac{\theta_{0}}{2}}}^{{\frac{\theta_{0}}{2}}}d\theta\;\mathbf{i}-a\int _{-{\frac{\theta_{0}}{2}}}^{{\frac{\theta_{0}}{2}}}\cos \theta \;d\theta\;\mathbf{j}-a\int_{-{\frac{\theta_{0}}{2}}}^{{\frac{\theta_{0}}{2}}}\sin \theta \;d\theta\;\mathbf{k}\right) \end{gather} \]

Figure 3

Integration of    \( \displaystyle \int_{-{\frac{\theta_{0}}{2}}}^{{\frac{\theta_{0}}{2}}}\;d\theta \)
\[ \begin{gather} \int_{-{\frac{\theta_{0}}{2}}}^{{\frac{\theta_{0}}{2}}}\;d\theta=\frac{\theta_{0}}{2}-\left(-{\frac{\theta_{0}}{2}}\right)=\frac{\theta_{0}}{2}+\frac{\theta_{0}}{2}=2\frac{\theta_{0}}{2}=\theta_{0} \end{gather} \]

Integration of    \( \displaystyle \int_{-{\frac{\theta _{\;0}}{2}}}^{{\frac{\theta _{\;0}}{2}}}\cos\theta \;d\theta \)
\[ \begin{gather} \int_{-{\frac{\theta_{0}}{2}}}^{{\frac{\theta_{0}}{2}}}\cos \theta\;d\theta =\left.\sin \theta \right|_{\;-\frac{\theta_{0}}{2}}^{\;\frac{\theta_{0}}{2}}=\sin \frac{\theta_{0}}{2}-\sin \;\left(-{\frac{\theta_{0}}{2}}\right) \end{gather} \]
the function sine is an odd function \( f(-x)=-f(x) \), \( \sin \left(-{\dfrac{\theta_{0}}{2}}\right)=-\sin \dfrac{\theta_{0}}{2} \)
\[ \begin{gather} \int_{-{\frac{\theta_{0}}{2}}}^{{\frac{\theta_{0}}{2}}}\cos\theta \;d\theta =\sin \frac{\theta_{0}}{2}-\left[-\sin \;\frac{\theta_{\;0}}{2}\right]=\sin \frac{\theta_{\;0}}{2}+\sin \frac{\theta_{0}}{2}=2\;\sin \;\frac{\theta_{0}}{2} \end{gather} \]

Integration of    \( \displaystyle \int_{-{\frac{\theta_{;0}}{2}}}^{{\frac{\theta_{\;0}}{2}}}\sin \theta \;d\theta \)
\[ \begin{gather} \int_{-{\frac{\theta_{0}}{2}}}^{{\frac{\theta_{0}}{2}}}\sin \theta \;d\theta =\left.-\cos \theta\right|_{-\frac{\theta_{0}}{2}}^{\;\frac{\theta_{0}}{2}}=-\left[\cos \frac{\theta_{0}}{2}-\cos \left(-{\frac{\theta_{0}}{2}}\right)\right] \end{gather} \]
the function cosine is an even function \( f(x)=f(-x) \), \( \cos \left(-{\dfrac{\theta_{0}}{2}}\right)=\cos \dfrac{\theta_{0}}{2} \)
\[ \begin{gather} \int_{-{\frac{\theta_{0}}{2}}}^{{\frac{\theta_{0}}{2}}}\sin \theta \;d\theta =-\left[\cos \frac{\theta_{0}}{2}-\cos \frac{\theta_{0}}{2}\right]=0 \end{gather} \]
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\frac{\lambda a}{\left(x^{2}+a^{2}\right)^{\;\frac{3}{2}}}\left(x\theta_{0}\;\mathbf{i}-2a\sin \frac{\theta_{0}}{2}\;\mathbf{j}-0\;\mathbf{k}\right)\\[5pt] \mathbf{E}=\frac{1}{4\pi\epsilon_{0}}\frac{\lambda a}{\left(x^{2}+a^{2}\right)^{\;\frac{3}{2}}}\left(x\theta_{0}\;\mathbf{i}-2a\sin \frac{\theta_{0}}{2}\;\mathbf{j}\right) \tag{IX} \end{gather} \]
Note: The integral in the k direction is equal to zero, because an element of charge dq, produces at a point, an element of the field that can be decomposed in the elements, dEx, −dEy and −dEz (Figure 4-A). Another element of charge placed in a symmetrical position produces at the same point another element of the field that can be decomposed in the elements dEx, −dEy and dEz (Figure 4-B), so the elements in the k direction cancel and only elements in the i and j directions contribute to the total field.

Figure 4

The total charge of the arc is Q, and its length is aθ0, so the linear density of charge can be written
\[ \begin{gather} \lambda =\frac{Q}{a\theta_{0}} \tag{X} \end{gather} \]
substituting expression (X) into expression (IX)
\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\frac{Q}{a\theta_{0}}\frac{a}{\left(x^{2}+a^{2}\right)^{\;\frac{3}{2}}}\left(x\theta_{0}\;\mathbf{i}-2a\sin \frac{\theta_{0}}{2}\;\mathbf{j}\right)\\[5pt] \mathbf{E}=\frac{1}{4\pi\epsilon_{0}}\frac{Q}{\left(x^{2}+a^{2}\right)^{\;\frac{3}{2}}}\left(\frac{1}{\theta_{0}}x\theta_{0}\;\mathbf{i}-\frac{1}{\theta_{0}}2a\sin \frac{\theta_{0}}{2}\;\mathbf{j}\right) \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\frac{Q}{\left(x^{2}+a^{2}\right)^{\;\frac{3}{2}}}\left(x\;\mathbf{i}-\frac{2a}{\theta_{0}}\sin \frac{\theta_{0}}{2}\;\mathbf{j}\right)} \end{gather} \]

Figure 5

b) In the center of curvature, we have x = 0, substituting in the solution of the previous item (Figure 6)

\[ \begin{gather} \mathbf{E}=\frac{1}{4\pi \epsilon_{0}}\frac{Q}{\left(0^{2}+a^{2}\right)^{\;\frac{3}{2}}}\left(0\;\mathbf{i}-\frac{2a}{\theta_{0}}\sin \frac{\theta_{0}}{2}\;\mathbf{j}\right)\\[5pt] \mathbf{E}=\frac{-{1}}{4\pi\epsilon _{0}}\frac{Q}{a^{3}}\frac{2a}{\theta_{0}}\sin \frac{\theta_{0}}{2}\;\mathbf{j} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\mathbf{E}=\frac{-{1}}{4\pi \epsilon_{0}}\frac{Q}{a^{2}}\frac{2}{\theta_{0}}\sin \frac{\theta_{0}}{2}\;\mathbf{j}} \end{gather} \]

Figure 6

c) When the central angle tends to zero (\( \theta_{0}\rightarrow 0 \)), the arc tends to a point charge, applying the limit to the solution of the previous item (Figure 7)

\[ \begin{gather} \mathbf{E}=\underset{\theta_{0}\rightarrow0}{\lim }-\frac{1}{4\pi \epsilon_{0}}\;\frac{Q}{a^{2}}\frac{2}{\theta_{0}}\sin \frac{\theta_{\;0}}{2}\;\mathbf{j} \end{gather} \]
turning the term \( \frac{2}{\theta_{0}} \) upside down
\[ \begin{gather} \mathbf{E}=\underset{\theta_{0}\rightarrow 0}{\lim}-{\frac{1}{4\pi \epsilon_{0}}\frac{Q}{a^{2}}\dfrac{\sin \dfrac{\theta_{0}}{2}}{\dfrac{\theta_{\;0}}{2}}\;\mathbf{j}} \end{gather} \]

Figure 7

From the limit   \( \underset{x\rightarrow 0}{\lim }{\dfrac{\sin x}{x}}=1 \)
\[ \begin{gather} \mathbf{E}=-{\frac{1}{4\pi \epsilon_{0}}}\frac{Q}{a^{2}}\underbrace{\;\underset{\theta_{0}\rightarrow 0}{\lim }{\dfrac{\sin \dfrac{\theta_{0}}{2}}{\dfrac{\theta_{0}}{2}}}}_{1}\;\mathbf{j} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\mathbf{E}=-{\frac{Q}{4\pi \epsilon_{0}a^{2}}}\;\mathbf{j}} \end{gather} \]
and the result is reduced to the electric field vector of a point charge.
advertisement