Solved Problem on Dynamics
advertisement   



In an inclined plane AB of 45º to the horizontal, a body is launched in an upward direction rests for an instant returning to point A. The coefficient of friction between the block and the plane is   \( 2-\sqrt{3\;} \). Determine the ratio between the interval of time to the body go from A to B and to return from B to A.


Problem data:
  • Coefficient of friction between the block and the plane:    \( \mu =2-\sqrt{3\;} \);
  • Angle of inclined plane:    θ = 45°.
Problem diagram:

Figure 1

The body is launched with an initial speed v0U and starts decelerating due to the component of gravitational force in the direction of the plane, its speed decreases until zero, vU = 0 at point B (Figure 1-A). From this instant of time, it gets a return movement, starting from the rest v0D = 0 and under the action of the acceleration due to the component of gravitational force and passes point A with a final speed vD (Figure 1-B).

Solution

Drawing a free-body diagram, we have the forces that act in it in each situation.
  • Body rising:
We choose a frame of reference with the x-axis parallel to the inclined plane and pointing upward (Figure 2-A). In the block acts gravitational force \( {\vec F}_{g} \), the force of friction \( {\vec F}_{f} \), and the normal reaction force \( \vec{N} \).

Figure 2

The gravitational force can be decomposed into two components, one component parallel to the x-axis \( {\vec F}_{gP} \) and the normal or perpendicular component \( {\vec F}_{gN} \) (Figure 2-B).
In the triangle on the left the gravitational force \( {\vec F}_{g} \) is perpendicular to the horizontal plane, makes an angle of 90°, the angle between the inclined plane and the horizontal plane is given as 45°, as the sum of the interior angles of a triangle equals to 180°, the angle α between the gravitational force \( {\vec{F}}_{g} \) and the parallel component \( {\vec{F}}_{gP} \) will be
\[ 45°+90°+\alpha=180°\Rightarrow \alpha=180°-45°-90°\Rightarrow \alpha=45° \]
In the triangle on the right, the normal component of gravitational force \( {\vec F}_{gN} \) makes with the inclined plane an angle of 90°, then the angle β between the gravitational force \( {\vec{F}}_{g} \) and the normal component \( {\vec{F}}_{gN} \) will be
\[ \alpha +\beta=90°\Rightarrow \beta=90°-45°\Rightarrow \beta=60° \]
they are complementary angles.
Drawing the forces in a coordinate system (Figure 2-C), we apply Newton's Second Law
\[ \begin{gather} \bbox[#99CCFF,10px] {\vec{F}=m\vec{a}} \tag{I} \end{gather} \]
In the y direction, there is no motion the normal reaction force \( \vec{N} \) and normal component of gravitational force \( {\vec{F}}_{gN} \) cancel out
\[ \begin{gather} N=P_{N} \tag{II} \end{gather} \]
the normal component of gravitational force is given by
\[ \begin{gather} F_{gN}=F_{g}\cos 45° \tag{III} \end{gather} \]
the gravitational force is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {F_{g}=mg} \tag{IV} \end{gather} \]
substituting the expression (IV) into expression (III)
\[ \begin{gather} F_{gN}=mg\cos 45° \tag{V} \end{gather} \]
substituting the expression (V) into expression (II)
\[ \begin{gather} N=mg\cos 45° \tag{VI} \end{gather} \]
In the x direction, we apply the expression (I) to find the acceleration of the block rising aU
\[ \begin{gather} -F_{f}-F_{gP}=ma_{U} \tag{VII} \end{gather} \]
the force of friction is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {F_{g}=\mu N} \tag{VIII} \end{gather} \]
substituting the expression (VI) into expression (VIII)
\[ \begin{gather} F_{f}=\mu mg\cos 45° \tag{IX} \end{gather} \]
the parallel component of the gravitational force is given by
\[ \begin{gather} F_{gP}=F_{g}\sin 45° \tag{X} \end{gather} \]
substituting the expression (IV) into expression (X)
\[ \begin{gather} F_{gP}=mg\cos 45° \tag{XI} \end{gather} \]
substituting the expressions (IX) and (XI) into expression (VII)
\[ -\mu \cancel{m}g\cos 45°-\cancel{m}g\cos 45°=\cancel{m}a_{S} \]

From the Trigonometry
\[ \sin 45°=\cos 45°=\dfrac{\sqrt{2\;}}{2} \]
\[ \begin{gather} -\mu g\frac{\sqrt{2\;}}{2}-g\frac{\sqrt{2\;}}{2}=a_{U}\\ a_{U}=-{\frac{\sqrt{2\;}}{2}}g(\mu +1) \tag{XII} \end{gather} \]
  • Body descending:
We choose a frame of reference with the x-axis parallel to the inclined plane and direction downward. In the block act the same forces, only the force of friction \( {\vec{F}}_{f} \) it is in the opposite direction (Figure 3-A).
Likewise, the gravitational force can be projected into two components (Figure 2-B).
We draw the forces in a coordinate system (Figure 3-B).
In y direction is valid the same expression (VI), previously found.

Figure 3

In the x direction, we apply the expression (I)
\[ \begin{gather} -F_{f}+F_{gP}=ma_{D} \tag{XIII} \end{gather} \]
substituting expressions (IX) and (XI) into expression (XIII)
\[ \begin{gather} -\mu \cancel{m}g\cos 45°+\cancel{m}g\cos 45°=\cancel{m}a_{D}\\ -\mu g\frac{\sqrt{2\;}}{2}+g\frac{\sqrt{2\;}}{2}=a_{D}\\ a_{D}=\frac{\sqrt{2\;}}{2}g(1-\mu) \tag{XIV} \end{gather} \]
From Kinematics, we have the velocity as a function of time
\[ \bbox[#99CCFF,10px] {v=v_{0}+at} \]
For the block rising, the final speed is zero, vU = 0, and substituting the expression (XII)
\[ \begin{gather} v_{U}=v_{0U}+a_{U}t_{U}\\ 0=v_{0U}-{\frac{\sqrt{2\;}}{2}}g(\mu +1)t_{U}\\ v_{0U}=\frac{\sqrt{2\;}}{2}g(\mu +1)t_{U} \tag{XV} \end{gather} \]
For the block descending, the initial speed is zero, v0D = 0, and substituting the expression (XIV)
\[ \begin{gather} v_{D}=v_{0D}+a_{D}t_{D}\\ v_{D}=0+\frac{\sqrt{2\;}}{2}g(1-\mu)t_{D}\\ v_{D}=\frac{\sqrt{2\;}}{2}g(1-\mu)t_{D} \tag{XVI} \end{gather} \]
Dividing the expression (XV) by (XVI)
\[ \begin{gather} \frac{v_{0U}}{v_{D}}=\frac{\dfrac{\cancel{\sqrt{2\;}}}{\cancel{2}}\cancel{g}(\mu +1)t_{U}}{\dfrac{\cancel{\sqrt{2\;}}}{\cancel{2}}\cancel{g}(1-\mu)t_{D}}\\ \frac{v_{0U}}{v_{D}}=\frac{(\mu +1)t_{U}}{(1-\mu)t_{D}} \tag{XVII} \end{gather} \]
To find the speeds, we use the equation of velocity as a function of displacement
\[ \bbox[#99CCFF,10px] {v^{2}=v_{0}^{2}+2a\Delta S} \]
The distance traveled by the block is the same on the climb and descent.
During the climb, substituting the expression (XII)
\[ \begin{gather} v_{U}^{2}=v_{0U}^{2}+2a_{U}\Delta S\\ 0^{2}=v_{0U}^{2}-\cancel{2}{\frac{\sqrt{2\;}}{\cancel{2}}}g(\mu +1)\Delta S\\ v_{0U}^{2}=\sqrt{2\;}g(\mu +1)\Delta S \\ v_{0U}=\sqrt{\sqrt{2\;}g(\mu +1)\Delta S\;} \tag{XVIII} \end{gather} \]
During the descent, substituting the expression (XIV)
\[ \begin{gather} v_{D}^{2}=v_{0D}^{2}+2a_{D}\Delta S\\ v_{D}^{2}=0^{2}+\cancel{2}\frac{\sqrt{2\;}}{\cancel{2}}g(1-\mu)\Delta S\\ v_{D}^{2}=\sqrt{2\;}g(1-\mu)\Delta S\\ v_{D}=\sqrt{\sqrt{2\;}g(1-\mu)\Delta S\;} \tag{XIX} \end{gather} \]
Substituting expressions (XVIII) and (XIX) into expression (XVII)
\[ \begin{gather} \frac{\sqrt{\sqrt{2\;}g(\mu +1)\Delta S\;}}{\sqrt{\sqrt{2\;}g(1-\mu)\Delta S\;}}=\frac{(\mu +1)t_{U}}{(1-\mu)t_{D}} \end{gather} \]
squaring both sides of the equation
\[ \begin{gather} \left(\frac{\sqrt{\sqrt{2\;}g(\mu +1)\Delta S\;}}{\sqrt{\sqrt{2\;}g(1-\mu)\Delta S\;}}\right)^{2}=\left(\frac{(\mu +1)t_{U}}{(1-\mu)t_{D}}\right)^{2}\\ \frac{\cancel{\sqrt{2\;}}\cancel{g}\cancel{(\mu +1)}\cancel{\Delta S}}{\cancel{\sqrt{2\;}}\cancel{g}\cancel{(1-\mu)}\cancel{\Delta S}}=\frac{(\mu +1)^{\cancel{2}}t_{U}^{2}}{(1-\mu)^{\cancel{2}}t_{D}^{2}}\\ 1=\frac{(\mu +1)t_{S}^{2}}{(1-\mu)t_{D}^{2}} \end{gather} \]
\[ \left(\frac{t_{S}}{t_{D}}\right)^{2}=\frac{1-\mu}{(\mu +1)} \]
substituting the value of μ given in the problem
\[ \begin{gather} \left(\frac{t_{U}}{t_{D}}\right)^{2}=\frac{1-(2-\sqrt{3\;})}{2-\sqrt{3}+1}\\[5pt] \left(\frac{t_{U}}{t_{D}}\right)^{2}=\frac{1-2+\sqrt{3\;}}{3-\sqrt{3\;}}\\[5pt] \left(\frac{t_{U}}{t_{D}}\right)^{2}=\frac{-1+\sqrt{3\;}}{3-\sqrt{3\;}} \end{gather} \]
to rationalize this expression, we multiply the numerator and the denominator by \( 3+\sqrt{3\;} \)
\[ \begin{gather} \left(\frac{t_{U}}{t_{D}}\right)^{2}=\frac{-1+\sqrt{3\;}}{3-\sqrt{3\;}}\times\frac{3+\sqrt{3\;}}{3+\sqrt{3\;}}\\[5pt] \left(\frac{t_{U}}{t_{D}}\right)^{2}=\frac{-3-\sqrt{3\;}+3\sqrt{3\;}+3}{9+3\sqrt{3\;}-3\sqrt{3\;}-3}\\[5pt] \left(\frac{t_{U}}{t_{D}}\right)^{2}=\frac{2\sqrt{3\;}}{6}\\[5pt] \left(\frac{t_{U}}{t_{D}}\right)^{2}=\frac{\sqrt{3\;}}{3} \end{gather} \]
\[ \bbox[#FFCCCC,10px] {\frac{t_{U}}{t_{D}}=\sqrt{\frac{\sqrt{3\;}}{3}}} \]
advertisement