Solved Problem on Electric Current
advertisement   



A 100-ton electric locomotive is driven by four electric engines operating with a potential difference of 1000 volts and moves at a speed of 72 km/h. Assuming the friction coefficient between the wheels of the locomotive and the rails equal to 0.5 and the free-fall acceleration g=10 m/s2, determine:
a) The electric current circulating on each engine;
b) If in each engine we have a current equal to 4000 amperes, how many railroad cars, 15 tons each, will the locomotive be able to pull?


Problem data:
  • Mass of the locomotive:    M = 100 t;
  • Mass of a railroad car:    MR = 15 t;
  • Speed ​​of locomotive:    v = 72 km/h;
  • Coefficient of friction:    μ = 0.5;
  • Voltage line:    U = 1000 V;
  • Free-fall acceleration:    g = 10 m/s2.
Problem diagram:

Figure 1

Solution

First, we convert the unit of mass given in tons (t) to kilograms (kg), and the speed is given in kilometers per hour (km/h) to meters per second (m/s) used in the International System of Units (S.I.).
\[ \begin{gather} M=100\;\cancel{\text{t}}\times \frac{1000\;\text{kg}}{1\;\cancel{\text{t}}}=100\times 1000\;\text{kg}=100000\;\text{kg}\\[10pt] M_{R}=15\;\cancel{\text{t}}\times \frac{1000\;\text{kg}}{1\;\cancel{\text{t}}}=15\times 1000\;\text{kg}=15000\;\text{kg}\\[10pt] v=\frac{72\;\cancel{\text{km}}}{1\;\cancel{\text{h}}}\times \frac{1000\;\text{m}}{1\;\cancel{\text{km}}}\times \frac{1\;\cancel{\text{h}}}{3600\;\text{s}}=\frac{720\;\text{m}}{36\;\text{s}}=20\;\text{m/s} \end{gather} \]
a) The power generated by one of the engines will be given by
\[ \begin{gather} \bbox[#99CCFF,10px] {\mathscr{P}=Ui} \tag{I} \end{gather} \]
The total power generated by the four engines will be
\[ \begin{gather} \mathscr{P}_{T}=4\mathscr{P} \tag{II} \end{gather} \]
substituting the expression (I) into (II), we have
\[ \begin{gather} \mathscr{P}_{T}=4Ui \tag{III} \end{gather} \]
From Classical Mechanics, we have the total power required to make the locomotive move itself
\[ \begin{gather} \bbox[#99CCFF,10px] {\mathscr{P}_{T}=Fv} \tag{IV} \end{gather} \]
equating expressions (III) and (IV)
\[ \begin{gather} 4Ui=Fv \tag{V} \end{gather} \]
So the locomotive move, the engines should overcome the force of friction. In Figure 1, the train wheels push the rails back with the force \( \vec{F} \), the rails react to the wheels with the force of friction making the train move itself (Newton's Third Law)
\[ \begin{gather} F=F_{f}=\mu N \tag{VI} \end{gather} \]
substituting the expression (VI) into (V), we obtain
\[ \begin{gather} 4Ui=\mu Nv \tag{VII} \end{gather} \]
Figure 2

The normal \( \vec{N} \) and the weight \( \vec{W} \) of the locomotive cancel out (Figure 2)
\[ \begin{gather} N=W \tag{VIII} \end{gather} \]
substituting the expression (VIII) into (VII)
\[ \begin{gather} 4Ui=\mu Wv \tag{IX} \end{gather} \]
the weight is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {W=Mg} \tag{X} \end{gather} \]
substituting the expression (X) into (IX), we have
\[ \begin{gather} 4Ui=\mu Mgv\\ i=\frac{\mu Mgv}{4U} \tag{XI} \end{gather} \]
substituting the values ​​given in the problem, we obtain
\[ \begin{gather} i=\frac{0.5\times 100000\times 10\times 20}{4\times 1000}\\ i=\frac{10000000}{4000} \end{gather} \]
\[ \bbox[#FFCCCC,10px] {i=2500\;\text{A}} \]

b) Applying the expression (XI) to the current and using the data of this item, we have the total mass MT that can be driven by the engines
\[ \begin{gather} M_{T}=\frac{4Ui}{\mu gv}\\M_{T}=\frac{5\times 1000\times 4000}{0.5\times 10\times 20}\\ M_{T}=\frac{16000000}{100}\\ M_{T}=160000\;\text{kg} \end{gather} \]
Figure 3

Of this total mass, we have 100 000 kg represent the mass of the locomotive itself, then leftover for the railroad cars \( 1600000-100000=60000\;\text{kg} \),
\[ 1600000-100000=60000\;\text{kg,} \]
as each railroad car has a mass of 15 000 kg, the number of railroad cars will be
\[ n=\frac{60000\;\cancel{\text{kg}}}{15000\frac{\cancel{\text{kg}}}{\text{railroad car}}} \]
\[ \bbox[#FFCCCC,10px] {n=4\;\text{railroad cars}} \]
advertisement