A point charge of 200 μC moves from point A to point B in an electric field, the work
done by the electric force is 8×10−4 J. Calculate:
a) The potential difference between points A and B;
b) The electric potential taking B as a reference.
Problem data:
- Electric charge: q = 200 μC = 200×10−6 C;
-
Work done by electric force:
\( {_{{\small F}_{\small E}}}W{_a^b}=8\times 10^{-4}\;\text J \) .
Problem diagram:
Solution:
a) The work of electric force as a function of the charge and the potential difference is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{{_{{\small F}_{\small E}}}W{_a^b}=q(V_a-V_b)}
\end{gather}
\]
\[
\begin{gather}
V_a-V_b=\frac{{_{{\small F}_{\small E}}}W{_a^b}}{q} \\[5pt]
V_a-V_b=\frac{8\times 10^{-4}\times 10^{-2}\times 10^6\;\mathrm{\cancel C .V}}{2\;\mathrm{\cancel C}} \\[5pt]
V_a-V_b=\frac{\cancelto{4}{8}\times 10^{-4}}{\cancel 2\times 10^2\times 10^{-6}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{V_a-V_b=4\;\text V}
\end{gather}
\]
b) We chose the potential of point B as a reference. The potential of point B shall be zero,
Vb = 0. Substituting this value into the expression found in the previous item, the
potential will be
\[
\begin{gather}
V_a=4-0
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{V_a=4\;\text V}
\end{gather}
\]