Solved Problem on Magnetic Field
advertisement   



In the figure, we have three conductors, A, B, and C, parallels. In the wires flow the currents iA=10 A, iB=20 A and iC=30 A, in the indicated directions, at a distance of \( L=2\sqrt{3\;}\ \text{m} \) from each other. Determine the vector of the magnetic field in the center O of the triangle (centroid). Assume \( \mu_{0}=4\pi \times 10^{-7}\frac{\text{T.m}}{\text{A}} \).


Problem data:
  • Current on the wire A:    iA = 10 A;
  • Current on the wire B:    iB = 20 A;
  • Current on the wire C:    iC = 30 A;
  • Distance between wires:    \( L=2\sqrt{3\;}\ \text{m} \);
  • Vacuum permeability:    \( \mu_{0}=4\pi \times 10^{-7}\frac{\text{T.m}}{\text{A}} \).
Problem diagram:

Figure 1

Solution

As the distances between the wires are the same, they occupy the vertices of an equilateral triangle. The distance from the wires A, B, and C to the point O, where we want the magnetic field, will be calculated based on Figure 2.
The altitude \( \overline{AM} \) is perpendicular to the side \( \overline{BC} \), and divides this side into two equal segments, so \( \overline{BM}=\frac{\overline{BC}}{2}=\frac{2\sqrt{3\;}}{2}=\sqrt{3\;}\;\text{m} \). The segment \( \overline{OB} \) divides the angle \( A\hat{B}C \) in half, so the angle \( O\hat{B}M \) is 30°, and the distance r to the center O will be \( r=\overline{OA}=\overline{OB}=\overline{OC} \).
Figure 2
\[ \begin{gather} \cos 30°=\frac{\text{adjacent side}}{\text{hypotenuse}}=\frac{\overline{{BM}}}{r}\\ r=\frac{\overline{{BM}}}{\cos 30°}=\frac{\sqrt{3\;}}{\dfrac{\sqrt{3\;}}{2}}=\cancel{\sqrt{3\;}}\times \frac{2}{\cancel{\sqrt{3\;}}}=2\;\text{m} \end{gather} \]
The magnitude of the magnetic field of a wire is calculated by the expression
\[ \begin{gather} \bbox[#99CCFF,10px] {B=\frac{\mu _{0}}{2\pi}\frac{i}{r}} \tag{I} \end{gather} \]
The vector of magnetic field \( {\vec{B}}_{A} \), due to the current through the wire A, will be given by the right-hand rule, will be tangent to the line of magnetic induction at point O and perpendicular to the segment \( \overline{OA} \) (Figure 3), applying the expression (I)
\[ \begin{gather} B_{A}=\frac{\mu_{0}}{2\pi}\frac{i_{A}}{r}\\ B_{A}=\frac{\cancel{4}\cancel{\pi} \times 10^{-7}}{\cancel{2}\cancel{\pi}}\times \frac{10}{\cancel{2}}\\ B_{A}=10\times 10^{-7}\;\text{T} \end{gather} \]

Figure 3

The vector of magnetic field \( {\vec{B}}_{B} \), due to the current through the wire B, will be given by the right-hand rule, will be tangent to the line of magnetic induction at point O and perpendicular to the segment \( \overline{OB} \) (Figure 4). The angle \( O\hat{B}C \) is equal to 30°, this angle and angle α are alternates angles, then α is also 30°. The angle β will be
\[ \begin{gather} \alpha +90°+\beta=180°\\ 30°+90°+\beta =180°\\\ \beta=180°-120°\\\ \beta =60° \end{gather} \]
Figure 4

Applying the expression (I)
\[ \begin{gather} B_{B}=\frac{\mu_{0}}{2\pi}\frac{i_{B}}{r}\\ B_{B}=\frac{\cancel{4}\cancel{\pi} \times 10^{-7}}{\cancel{2}\cancel{\pi}}\frac{20}{\cancel{2}}\\ B_{B}=20\times 10^{-7}\;\text{T} \end{gather} \]
The vector of magnetic field \( {\vec{B}}_{C} \), due to the current through the wire C, will be given by the right-hand rule, will be tangent to the line of magnetic induction at point O and perpendicular to the segment \( \overline{OC} \) (Figure 5). The angle \( O\hat{C}B \) is equal to 30 °, this angle and angle α are alternates angles, then α is also 30°. The angle β will be
\[ \begin{gather} \alpha +\beta =90°\\ 30°+\beta=90°\\ \beta =90°-30°\\ \beta=60° \end{gather} \]
it is the angle between the vector \( {\vec{B}}_{C} \) and the horizontal line (Figure 5).
Figure 5

Applying the expression (I)
\[ \begin{gather} B_{B}=\frac{\mu_{0}}{2\pi}\frac{i_{B}}{r}\\ B_{B}=\frac{\cancel{4}\cancel{\pi} \times 10^{-7}}{\cancel{2}\cancel{\pi}}\frac{30}{\cancel{2}}\\ B_{B}=30\times 10^{-7}\;\text{T} \end{gather} \]
The resultant vector of the magnetic field will be calculated by the sum
\[ \vec{B}={\vec{B}}_{A}+{\vec{B}}_{B}+{\vec{B}}_{C} \]
drawing the vectors \( {\vec{B}}_{A} \), \( {\vec{B}}_{B} \) and \( {\vec{B}}_{C} \) in a coordinated system xy and calculating its components in x and y directions (Figure 6)

Figure 6

Direction x:
\[ \begin{gather} B_{Ax}=B_{A}\cos 0°=10\times 10^{-7}\times 1=10\times 10^{-7}\;\text{T}\\[5pt] B_{BX}=B_{B}\cos (-60°)=B_{B}\cos 60°=20\times 10^{-7}\times \frac{1}{2}=10\times 10^{-7}\;\text{T}\\[5pt] B_{Cx}=B_{C}\cos 60°=30\times 10^{-7}\times \frac{1}{2}=15\times 10^{-7}\;\text{T} \end{gather} \]
The magnitude of resultant vector in the x-direction will be
\[ \begin{gather} B_{x}=B_{Ax}+B_{BX}+B_{Cx}\\ B_{x}=10\times 10^{-7}+10\times 10^{-7}+15\times 10^{-7}\\ B_{x}=35\times 10^{-7}\;\text{T} \end{gather} \]
Direction y:
\[ \begin{gather} B_{Ay}=B_{A}\sin 0=10\times 10^{-7}\times 0=0\\[5pt] B_{By}=B_{B}\sin(-60°)=-B_{B}\sin 60°=-20\times 10^{-7}\times \frac{\sqrt{3\;}}{2}=-10\sqrt{3\;}\times 10^{-7}\;\text{T}\\[5pt] B_{Cy}=B_{C}\sin 60°=30\times 10^{-7}\times \frac{\sqrt{3\;}}{2}=15\sqrt{3\;}\times 10^{-7}\;\text{T} \end{gather} \]
The magnitude of resultant vector in the y-direction will be
\[ \begin{gather} B_{y}=B_{Ay}+B_{By}+B_{Cy}\\ B_{y}=0-10\sqrt{3\;}\times 10^{-7}+15\sqrt{3\;}\times 10^{-7}\\ B_{y}=5\sqrt{3\;}\times 10^{-7}\;\text{T} \end{gather} \]
The magnitude of resultant vector \( \vec{B} \) will be calculated by applying the Pythagorean Theorem (Figure 7-A)
\[ \begin{gather} B^{2}=B_{x}^{2}+B_{y}^{2}\\ B^{2}=\left(35\times 10^{-7}\right)^{2}+\left(5\sqrt{3\;}\times 10^{-7}\right)^{2}\\ B^{2}=\left(1225\times 10^{-14}\right)+\left(25\times 3\times 10^{-14}\right)\\ B^{2}=(1225+75)\times 10^{-14}\\ B=\sqrt{1300\times 10^{-14}\;}\\ B=3.6\times 10^{-6}\;\text{T} \end{gather} \]
Figure 7

Vector \( \vec{B} \) will form with the axis an angle θ given by
\[ \begin{gather} \tan \theta =\frac{\text{opposite side}}{\text{adjacent side}}=\frac{B_{y}}{B_{x}}\\ \tan \theta=\frac{5\sqrt{3\;}.\cancel{10^{-7}}}{35.\cancel{10^{-7}}}\\ \tan \theta \simeq0,25\\ \theta =\arctan(0.25)\simeq 14° \end{gather} \]
The resultant vector is shown in Figure 7-B

Magnitude: 3.6\times 10−7 T ;
Direction: making an angle of 14º with horizontal pointing to the right. .
advertisement